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Roger Jovani1, Lorenzo Pérez-Rodrı́guez2,3, and François Mougeot4,5
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Letter
In their recent article in TREE, Kü hl and Burghardt [1]
reviewed the emerging field of animal biometrics, but
missed an opportunity to highlight an important and prom-
ising tool: fractal geometry. This tool has seldom been
applied in the context of animal biometrics, but the few
tentative examples reported so far have shown great poten-
tial to contribute to the development of this research field.

Fractals are mathematical sets that are self-similar
across scales [2]. Natural examples of fractal-like behaviour
include patterns that are built by recursive iteration, such as
branching (e.g., roots, clouds, or lungs), where a small part
ends up resembling the whole. Interestingly, fractal geome-
try can also describe patterns that are not strictly self-
similar, but that show intricate, complex, and heteroge-
neous configurations. For this reason, fractal geometry
offers new and valuable opportunities to describe and com-
pare complex individual- or species-specific patterns.

As highlighted by Kü hl and Burghardt [1], animal
biometric tools characterise phenotypic appearance, pro-
vide ways to recognise phenotypes, and enable the profiling
and description of individual behaviours. Some pioneering
studies have shown the potential of fractal geometry for
such tasks, by measuring the complexity of natural pat-
terns through their fractal dimension (FD). For instance,
FD can discriminate between butterfly species from their
wing patterns [3], branchiopod morph types from the
structure of their eggshells [4], mammalian species from
their cranial suture patterns [5], and ammonoid taxa from
their shell suture patterns [6]. Fractal analysis can also
differentiate types of music and instruments [7], suggest-
ing a potential use for the study of animal acoustic signals.
Individual and collective animal behaviours have also been
successfully characterised by fractal geometry. Examples
include analyses of movement tracks [8], spatial distribu-
tion of individuals or nests [9,10], or burrow architecture of
subterranean species [11]. Finally, black-and-white plum-
age patterns have also been described using fractal geom-
etry, with variation in the FD pattern being shown
experimentally to relate to individual quality [12].

As for most other tools used in animal biometrics, images
of patterns require prior processing and standardising
before fractal geometry analysis. Also, understanding what
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variation in FD means for a particular pattern (i.e., which
pattern properties cause variation in FD) may not be as
straightforward as with tools designed to measure a partic-
ular feature of a pattern. However, the latter can turn into an
advantage because understanding the meaning of FD for a
particular pattern may unravel unknown features of the
pattern under study. The main limitation may be that a
similar FD for a given structure could be shared by different
individuals or species. When that is the case, fractal dimen-
sion alone would be a bad choice, but could be used as one
more trait for pattern matching or as an initial filter to
discard improbable matches.

The advantages and opportunities that fractal geometry
offers to animal biometric studies are several. First, mea-
suring the FD of an object or pattern is relatively straight-
forward, and several methods (e.g., box-counting, dividers
method [2,5,12]), and software tools are readily available.
Second, fractal geometry captures the scaling properties of
the object, and is scale invariant, something that is par-
ticularly useful when studying objects of different size, or
comparing images taken at different distances. Third, the
FD of an object or pattern provides a single value that
summarises the way the pattern ‘behaves’ across scales.
This could have biological relevance, because it mirrors the
way individuals develop signalling traits in a coherent way
across scales (e.g., from individual feathers to whole plu-
mages for bird patterns), which could convey information
(e.g., physiological state) about the individual displaying
the pattern [12]. Fourth, it can be applied to a wide array of
patterns, and software tools developed for the analysis of a
given pattern in a given species could easily be adapted to
the study of other patterns.

For all these reasons, we suggest that the field of animal
biometrics would benefit greatly from incorporating fractal
geometry analyses into the study of animal patterns, and
we hope that this letter will stimulate further uses and
applications within this research field.

Acknowledgements
R.J. is supported by a ‘Ramón y Cajal’ (RYC-2009–03967) program from
the Spanish Ministerio de Ciencia e Innovación (MICINN). L.P-R. is
supported by a postdoctoral contract from ICETA-CCDRN.

References
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